简介:
1984
年,英国科学家首次发现南极上空出现臭氧洞。大气
臭氧层
的损耗是当前世界上又一个普遍关注的全球性
大气环境
问题,它同样直接关系到
生物圈
的安危和人类的生存。由于臭氧层中臭氧的减少,照射到地面的
太阳光
紫外线增强,对生物细胞具有很强的杀伤作用,对
生物圈
中的
生态系统
和各种生物,包括人类,都会产生不利的影响。2012年末,南极臭氧空洞历史性的降至1989年来最小面积。尽管南极洲上空的臭氧空洞正在逐渐减小,但是截止2014年10月,其大小仍与北美洲相当。
形成原因:
经过跟踪、监测,科学家们找到了臭氧层损耗即臭氧空洞的形成原因。一种大量用作制冷剂、喷雾剂、发泡剂等化工制剂的氟氯烃是导致臭氧减少的"罪魁祸首"。另外,寒冷也是臭氧层变薄的关键,这就是为什么首先在地球南北极最冷地区出现臭氧空洞的原因了。
人类活动排入大气中的一些物质进入平流层与那里的臭氧发生化学反应,就会导致臭氧耗损,使臭氧浓度减少。
目前状况:
2017
年,NASA的最新研究数据表明,自1988年以来,地球南极上空的臭氧层空洞正在迅速缩小,并减小至30年来的最低值<2500万平方公里,大约是2.6个中国陆地面积
存在威胁:
(一)对人类:
10
多年来,经科学家研究;大气中的臭氧每减少1%,照射到地面的紫外线就增加2%,人的皮肤癌患病率就增加3%,还受到白内障、免疫系统缺陷和发育停滞等疾病的袭击。居住在距南极洲较近的智利南端海伦娜岬角的居民,已尝到苦头,只要走出家门,就要在衣服遮不住的肤面,涂上防晒油,戴上太阳眼镜,否则半小时后,皮肤就晒成鲜艳的粉红色,并伴有痒痛;羊群则多患白内障,几乎全盲。
(二)对生物圈:
臭氧层破坏对植物产生难以确定的影响。近十几年来,人们对200多个品种的植物进行了增加紫外照射的实验,其中三分之二的植物显示出敏感性。一般说来,紫外辐射增加使植物的叶片变小,因而减少俘获阳光的有效面积,对光合作用产生影响。对大豆的研究初步
结果表明,紫外辐射会使其更易受杂草和病虫害的损害。臭氧层厚度减少25%,可使大豆减产20~25%。
紫外辐射的增加对水生生态系统也有潜在的危险。紫外线的增强还会使城市内的烟雾加剧,使橡胶、塑料等有机材料加速老化,使油漆褪色等。
国际政策:
在现代经济中,氟里昂等物质应用非常广泛,要全面淘汰,必须首先找到氟里昂等的替代物质和替代技术。世界上一些氟里昂的主要生产厂家参与开发研究了替代氟里昂的含氟替代物(含氢氯氟烃HCFC和含氢氟烷烃HCF等)及其合成方法,有可能用作发泡剂、制冷剂和清洗溶剂等,但这类替代物也损害臭氧层或产生温室效应。同时,也在开发研究非氟里昂类型的替代物质和方法,如水清洗技术、氨制冷技术等。
为了推动氟里昂替代物质和技术的开发和使用,逐步淘汰消耗臭氧层物质,许多国家采取了一系列政策措施。一类是传统的环境管制措施,如禁用、限制、配额和技术标准,井对违反规定实施严厉处罚,欧盟国家和一些经济转轨国家广泛采用了这类措施。一类是经济手段,如征收税费、资助替代物质和技术开发等。美国对生产和使用消耗臭氧层物质实行了征税和可交易许可证等措施。为了实施议定书的规定,1990年6月在伦敦召开的议定书缔约国第二次会议上,决定设立多边基金,对发展中国家淘汰有关物质提供资金援助和技术支持。
从1994年起,对流层中消耗臭氧层物质浓度开始下降。。但是,由于氟利昂相当稳定,可以存在50至100年,即使议定书完全得到履行,臭氧层的耗损也只能在2050年以后才有可能完全复原。